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Abstract

Cancer is a disease driven by a combination of inherited genetic variants and

somatic mutations. Recently available large‐scale sequencing data of cancer

genomes have provided an unprecedented opportunity to study the interac-

tions between them. However, previous studies on this topic have been limited

by simple, low statistical power tests such as Fisher's exact test. In this paper,

we design data‐adaptive and pathway‐based tests based on the score statistic

for association studies between somatic mutations and germline variations.

Previous research has shown that two single‐nucleotide polymorphism (SNP)‐
set‐based association tests, adaptive sum of powered score (aSPU) and data‐
adaptive pathway‐based (aSPUpath) tests, increase the power in genome‐wide
association studies (GWASs) with a single disease trait in a case–control study.
We extend aSPU and aSPUpath to multi‐traits, that is, somatic mutations of

multiple genes in a cohort study, allowing extensive information aggregation

at both SNP and gene levels. p‐values from different parameters assuming

varying genetic architecture are combined to yield data‐adaptive tests for

somatic mutations and germline variations. Extensive simulations show that,

in comparison with some commonly used methods, our data‐adaptive somatic

mutations/germline variations tests can be applied to multiple germline SNPs/

genes/pathways, and generally have much higher statistical powers while

maintaining the appropriate type I error. The proposed tests are applied to a

large‐scale real‐world International Cancer Genome Consortium whole

genome sequencing data set of 2583 subjects, detecting more significant and

biologically relevant associations compared with the other existing methods on

both gene and pathway levels. Our study has systematically identified the

associations between various germline variations and somatic mutations

across different cancer types, which potentially provides valuable utility for

cancer risk prediction, prognosis, and therapeutics.
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1 | INTRODUCTION

Germline variations and somatic mutations play key
roles in cancer. According to Knudson's “two‐hit” theory
(Knudson, 1971), cancer results from the combination of
germline variations and somatic mutations in the same
gene, as illustrated in Figure 1. Later, this theory has
been extended and is shown to be also applicable to
different genes. Studies on interactions between germline
variations and somatic mutations can help us seek how
commonly inherited variations can affect later somatic
mutations and progression of tumors (Carter et al., 2017;
Ramroop et al., 2019; Vali‐Pour et al., 2022).

Many studies indicate that there exist intrinsic
relationships between germline variations and somatic
mutations in cancer. For example, breast cancer patients
with inherited BRCA1 variations are more likely to lose
or gain nucleotides on certain chromosomes (Jonsson
et al., 2005; Stefansson et al., 2009). Melanoma patients
with MC1R germline variations are more likely to have
BRAF somatic mutations than those without (Landi
et al., 2006; Maldonado et al., 2003). Some RBFOX1
germline variants were found to significantly increase
SF3B1 somatic mutations (Carter et al., 2017). Recently,
the interactions between germline and somatic variation
information were discovered for biomarkers in prostate
cancer (Mamidi et al., 2019a). Researchers also discov-
ered that in colorectal cancer a single‐nucleotide
polymorphism (SNP) variant (rs78963230) is associated
with both TLR3 and FBXW7 somatic mutations (Barfield
et al., 2022). The germline–somatic variant interactions
were revealed in urothelial cancer (Vosoughi et al., 2020).
It is thus very important to study germline–somatic
interactions in cancer.

Note that it is more important to study the associa-
tions between germline variations and multiple somatic
mutations rather than a single somatic mutation. That is
because in tumors germline variations are often associ-
ated with somatic mutations of multiple genes, which
together complete a certain biological function. For
example, it was mentioned that multiple somatic
mutations were identified to occur simultaneously
(Chan & Gordenin, 2015). Also, in tumors the germline

variations are often associated with mutation patterns.
For example, cancer patients who have germline variants
near APOBEC3 have reduced levels of APOBEC muta-
tional signatures (instead of a single‐gene's mutation),
which is featured by replacing C with either T or G
within TCA or TCT motifs (Middlebrooks et al., 2016;
Nik‐Zainal et al., 2014).

Although researchers have made significant efforts to
associate somatic mutations with germline genotypes
(Dworkin et al., 2010) and to detect genetic linkage for
somatic mutations (LaFramboise et al., 2010), it had not
been possible to conduct genome‐wide investigation until
the recent availability of both germline and tumor DNA
sequence data (genome‐wide association studies
[GWASs] and whole‐exome/genome sequencing [WES/
WGS]) as afforded by large‐scale cancer genomics
consortia, such as the International Cancer Genome
Consortium (ICGC) and The Cancer Genome Atlas
(TCGA) projects. However, current research into
germline–somatic mutation interactions based on the
ICGC or TCGA resource suffers from several limitations.
The first is the use of the mutagenesis signatures, rather
than somatic mutations themselves, as the outcome
variables, leading to association results that are non-
specific regarding germline variant–somatic mutation
pairs and thus difficult to validate in functional studies
(Chen et al., 2019; Waszak et al., 2017). The second
limitation is that the employed statistical methods have
been largely limited to conventional SNP‐by‐SNP GWAS
association analysis by Fisher's exact test or logistic
regression, leading to a loss of statistical power in
genomic discoveries (Carter et al., 2017).

On the other hand, new SNP‐set‐based association
tests have been proposed and applied to GWAS and
WES/WGS of conventional quantitative and disease
traits, such as cholesterols and cancer risk (Gusev
et al., 2016; Ma & Wei, 2019; Pan et al., 2014, 2015;
Wei et al., 2016; Wu et al., 2011; Xu et al., 2017; Yang
et al., 2019). Nevertheless, these powerful methods have
never been applied in the context of germline–somatic
mutation interaction analysis.

In this paper, our objective is to adapt and develop
powerful, data‐adaptive statistical tests for genome‐wide

FIGURE 1 Illustration of Knudson's “two‐hit” theory.
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interrogation of germline–somatic mutation interactions
that capitalize on the unique features of the germline and
tumor genomes and address the challenges entailed by
the interplay of these two genomes in human cancers.
Our tests for the study of the associations between
germline variations and somatic mutations are based on
the adaptive sum of powered score (aSPU) (Pan
et al., 2014) and data‐adaptive pathway‐based test
(aSPUpath) (Pan et al., 2015) tests but extend to
multitraits, that is, the somatic mutations of multiple
genes especially driver genes in human cancers. Also,
previous aSPU (Pan et al., 2014) and aSPUpath (Pan
et al., 2015) tests were used for case–control study
common in GWASs, but in our work we extend these two
tests to cohort studies where all the samples are from
cancer patients. We will group multiple SNPs into a gene,
and further integrate functionally related genes into a
pathway. This helps aggregate signals from multiple
SNPs and genes and can potentially boost the statistical
power and maintain type I error at the same time.

As a case study, we systematically examine the
associations between germline variations and somatic
mutations using a large‐scale pan‐cancer genomics ICGC
data set (The ICGC/TCGA Pan‐Cancer Analysis of Whole
Genomes Consortium, 2020) (2583 cancer patients from 38
cancer types). After a sequence of data quality control
processing, we apply the modified aSPU and aSPUpath
tests to uncover the interactions between germline
variations (both gene level and pathway level) and somatic
mutations across all cancer types in humans. We also show
the results using the aSPU test outperform those using
Fisher's exact test and some other commonly used
germline‐somatic association test methods in terms of
detecting more association signals. On the pathway level,
using the aSPUpath test, we systematically detect some
hotspots such as CTNNB1 and KRAS somatic mutation
genes that are associated with almost all the pathway
genes' germline variations, and pathway RTK/RAS's
germline variations are associated with the somatic
mutations of a large proportion of driver genes. We further
study the dominant contributing genes in a pathway to the
pathway–somatic associations. Finally, we generate a
network of the pathway germline variations and somatic
mutations to give a systematic view of the interactions.

Our research provides valuable statistical tools for
cancer risk prediction. The work systematically identifies
the associations between various germline variations and
somatic mutations across different cancer types, which in
turn indicates the chance of cancer risks following
Knudson's “two‐hit” theory. The work also helps further
understanding of molecular mechanisms of specific
cancer genes and provides new insights into the
development of novel cancer therapy.

The remainder of the article is organized as follows.
In Section 2, we develop statistical association tests for
somatic mutations and germline variations. In Section 3,
we focus on the data‐adaptive pathway‐based test for
association studies between gene somatic mutations and
germline variations. In Section 4, we conduct extensive
simulation studies to show the high statistical power of
our method compared with others. Section 5 shows the
results of applying the proposed methods to the
association studies between somatic mutations and
germline variations on both gene and pathway levels
using a large‐scale pan‐cancer data set ICGC. The
conclusions and some discussions are given in Section 6.

2 | A POWERFUL AND
ADAPTIVE TEST FOR
ASSOCIATION STUDIES BETWEEN
SOMATIC MUTATIONS AND
GERMLINE VARIATIONS

In our work, we perform association studies between
somatic mutations and germline variations in a cohort
study. For a given gene, we use hypothesis testing to
study whether its somatic mutation is associated with
any germline variations across multiple cancer types.
Previous studies are only concerned with associations
between single germline SNP and somatic mutations.
Here, however, we inspect the associations between
whole genes (including all SNPs in one gene [Section 2]
or even multiple genes in a pathway [Section 3]) and
somatic mutations. This not only increases statistical
power, but also is biologically more meaningful.

2.1 | Notation

Suppose for n subjects i n( = 1, 2, …, ), X =i
X X X[ , …, , …, ]i ij ip

T
1 is a length‐p vector for the genotype

scores, where p is the number of SNPs in the gene under
consideration and X = 0ij or 1 or 2 is the genotype score,
representing the number of the minor allele, at SNP j for
subject i. LetY = 0i or 1 be a vector of binary traits, where
Y = 1i indicates there is a somatic mutation in a given
gene under consideration of subject i.

Let βL X( ; ) be the likelihood function. The score
vector U U U= [ , …, ]p

T
1 associated with L is βU ( ) =i

∂

∂
βL Xlog ( ; )

βi
. For binary Yi , we consider a logistic

regression model

≡ βY β X β β Xlogit[Pr( = 1)] = + + .i

j

p

ij j i
T

0
=1

0

(1)
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The null hypothesis to be tested is βH : = 00 , which
indicates that there is no association between any SNPs
and somatic mutation of a gene under H0.

In standard score tests, the score vector has a specific
form as follows:

U X Y Y X Y Y= ( − ¯ ) = ( − ¯ ),
i

n

i i
T

=1

(2)

where

X X X Y Y Y= [ , …, ], = [ , …, ] ,n n
T

1 1 (3)

and Ȳ is the sample mean of all Yi 's. U has the covariance
matrix C U Y Y X X X X= Cov( ) = ¯ (1 − ¯ ) ( − ¯ )( − ¯ )i

n
i i

T
=1 .

U also has an asymptotic normal distribution  C(0, ). The
statistics in some commonly used score test schemes for
GWASs are in Supplementary Information Table S1. See, for
example, Pan et al. (2015) for a review.

2.2 | aSPU: the data‐adaptive test

A class of sum of powered score (SPU) tests was proposed
by Pan et al. (2014) for different types of traits and
adjusted for covariates: T γ U( ) =SPU j

k
j
γ

=1 . The Sum
(γ = 1) and sum of squared score (SSU) (γ = 2) tests are
two special cases of the SPU tests. The score statistic‐
based tests perform differently for different situations.
For example, if the association directions are different so
that Uj's have different signs and TSum is small, then the
sum test loses its power in rejecting H0. On the other
hand, this does not happen to the SSU test (Pan, 2009).
The SPU test is more powerful if most association
directions are the same. With → ∞γ , the SPU test is
more powerful if one or few variables have large
association effect sizes. Interestingly, when → ∞γ , the
SPU test approaches to the minimum p‐value (UminP)
test under certain conditions (Pan et al., 2015).

To enhance the statistical power, some adaptive test
methods were further proposed, especially for high‐
dimensional data. Examples include the adaptive Ney-
man test (Fan, 1996), the adaptive SSU test (Pan &
Shen, 2011), the adaptive SPU (aSPU) test (Pan
et al., 2014), and a pathway‐based adaptive SPU
(aSPUpath) test (Pan et al., 2015).

The aSPU test in Pan et al. (2014) was originally
designed for association studies between a binary trait
and a set of rare variants in a case–control study. It is
shown to be a powerful test and also data adaptive. The
data adaptivity can be understood as follows. Consider
the SSU statistic in Supplementary Information Table S1,
which can be rewritten as

 T γ U U U( ) = = ,SPU

j

k

j
γ

j

k

j
γ

j

=1 =1

−1
(4)

where ζ U=j j
γ−1. That is, the SSU test can be considered

as an adaptive Sum test in Supplementary Information
Table S1 with the weights ζ j depending on the data itself.

Because different γ values are more suitable for different
data situations, it is desirable to choose γ adaptively
depending on the data. The idea of the aSPU test is to
choose various γ parameters from a candidate set Γ and
select the best statistic. Multiple γ parameters yield
multiple SPU p‐values P γ( )SPU . A minimum p‐value is
then selected as in the minimum p method
(Tippett, 1931). The minimum is not a genuine p‐value
anymore, so it is treated as a new test statistic.
Permutations can be used to estimate its p‐value. We
discuss the details as follows for our setting.

2.3 | aSPU test for gene‐based
association analysis of somatic mutations
and germline variations

In the aSPU association test, we first use X and Y to
compute the score vector (2) and the SPU statistic (4) for
a given parameter γ . We can use resampling methods
such as permutations (Churchill & Doerge, 1994) to
estimate the p‐value of SPU γ( ). That is, permute Y to
obtain a set of K trait vectors Y k K, = 1, 2, …,k( ) and
compute the corresponding score vector U k( ) and SPU
statistics T γ( )SPU

k( ) . Then we can (approximately) calculate
the p‐value as

≥

   


( )P γ

K
T γ T γ( ) =

1

+ 1
( ) ( ) + 1 ,SPU

k

K

SPU
k

SPU

=1

( )

(5)

where ⋅( ) is the indicator function.
Because the SPU with a specific γ works well for

specific data, it is desirable to try multiple γ values,
which leads to the aSPU test (Pan et al., 2014): a set of
candidate γ values is used and leads to different P γ( )SPU

values. Candidate sets such as Γ = {1, 2, …, 8} can be
used. The aSPU test simply follows the minimum p
method (Tippett, 1931) by taking the minimum p‐value:

∈
T P γ= min ( ).aSPU

γ
SPU

Γ (6)

TaSPU is not a genuine p‐value anymore. Thus, TaSPU is
treated as a new test statistic. Permutations or
bootstraps can be used to estimate its p‐value. Note

4 | CHEN ET AL.
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that we can reuse the above permutations in the
computation of the P γ( )SPU values so as to avoid
double permutations. That is, we can reuse the values
T γ j k k K( ), = 1, 2, …, − 1, + 1, …,SPU

j( ) in the estimation
of P γ( )k( ) . The p‐value for each simulation k is then
(approximately)

≥
≠

 ( )( )P γ
K

T γ T γ( ) =
1

( ) ( ) + 1 .k

j k
SPU
j

SPU
k( ) ( ) ( )

Letting ∈T P γ= min ( )aSPU
k

γ
k( )

Γ
( ) , the aSPU test p‐value

is then

≤ ( )( )P
K

T T=
1

+ 1
+ 1 .aSPU

k

K

aSPU
k

aSPU

=1

( ) (7)

3 | A DATA ‐ADAPTIVE
PATHWAY ‐BASED TEST FOR
ASSOCIATION STUDIES BETWEEN
GENE SOMATIC MUTATIONS AND
GERMLINE VARIATIONS

3.1 | Cancer signaling pathways

Here, we further consider using pathways in the
association studies between germline variations and
somatic mutations. Because a single SNP or gene may
have a low mutation frequency, signals from multiple
functionally related genes can be aggregated together and
studied in a relevant pathway. In fact, pathways are
important tools in advanced statistical genomics. Using
pathways instead of individual genes in association
testing can improve the statistical power.

Using pathways is also biologically more meaningful.
To adapt to the environment, cells in human beings need
to process signals from the outside. The function of a
pathway is to communicate between outside signals and
cell nucleus or between different cells. In cancer cells,
certain genes in some pathways are mutated, which
dysregulates signaling in cancer and leads to the change
of some characteristics of tumor cells.

3.2 | aSPUpath test for pathway‐based
association analysis of somatic mutations
and germline variations

Following the pathway‐based aSPU method aSPUpath in
Pan et al. (2015), we study association testing between
the SNPs in a pathway and somatic mutations, and
expect to gain higher statistical powers. Specifically,

given a pathway S with  S genes, partition the score
vector U in (2) according to the genes as







 U U U U= , , …, ,T T

S
T T

1 2

where [ ]U U U U= , , …,g g g gl
T

1 2 g
is the score subvector with

lg SNPs for gene g.
For each gene g, the SPU test statistic is calculated as

∕







T γ g

l
U( ; ) =

1
( ) ,SPU

g j

l

gj
γ

γ

1
=1

1
g

1

1

(8)

where γ > 01 is a scalar parameter. Note that standardiza-
tion is used in (8) so as to balance genes with different sizes.
For the pathway, calculate the following test statistic:

∈

T γ γ S T γ g( , ; ) = ( ( ; )) ,SPUpath

g S

SPU
γ

1 2 1
2

(9)

where γ > 02 is a scalar parameter. For given parameters
γ1 and γ2, resampling methods such as permutations can
be used to calculate the p‐value P γ γ S( , ; )SPUpath 1 2 . That is,
permute Y to obtain a set of K trait vectors Y k( ) and
compute the corresponding score vectors U k( ) and
SPUpath statistic T γ γ S( , ; )SPUpath

k( )
1 2 . We then have (esti-

mates of) the p‐value

≥





  



(

)

P γ γ S
K

T γ γ S

T γ γ S

( , ; ) =
1

+ 1

( , ; )

( , ; ) + 1 .

SPUpath

k

K

SPUpath
k

SPUpath

1 2

=1

( )
1 2

1 2

To accommodate different data situations, we choose
different parameters γ1 and γ2 and define a pathway‐
based aSPU test statistic as

∈ ∈
T S P γ γ S( ) = min ( , ; ),aSPUpath

γ γ
SPUpath

Γ , Γ
1 2

1 1 2 2
(10)

where Γ1 and Γ2 are the candidate parameter sets.
Finally, the corresponding p‐value PaSPUpath S( ) can be

computed also with permutations. Just like in the aSPU case,
there is no need to use double permutations. Instead, let

≥

≠









(

)

P γ γ S
K

T γ γ S

T γ γ S

( , ; ) =
1

( , ; )

( , ; ) + 1 .

SPUpath
k

j k
SPUpath
j

SPUpath
k

( )
1 2

( )
1 2

( )
1 2
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Then let

∈ ∈
T S P γ γ S( ) = min ( , ; ),aSPUpath

k

γ γ
SPUpath
k( )

Γ , Γ

( )
1 2

1 1 2 2

so as to obtain the p‐value

≤ ( )( )P
K

T S T S=
1

+ 1
( ) ( ) + 1 .aSPUpath S

k

K

aSPUpath
k

aSPUpath( )

=1

( )

Compared with the aSPU model, the aSPUpath model
requires to provide SNP information and gene information.
The SNP information includes SNP IDs, chromosome
numbers, and SNP locations. The gene information
includes gene IDs, chromosome number, and start and
end positions of the gene. In real‐world data sets such as
ICGC, all such information is available. This is described in
detail in Supplementary Information Section A.

In our later discussions, the test methods aSPU and
aSPUpath will be thoroughly evaluated through both
simulations and real‐world tests. In our simulation
studies, unlike previous aSPU and aSPUpath tests, we
consider cohort studies instead of case–control studies.
The details will be discussed in Section 4.1. For real‐
world data analysis, the SNPs will be prescreened via a
minor allele frequency (MAF) criterion. For example,
MAF >5% is used for common variants and MAF <5% is
used for rare variants. Then we identify SNPs that need
to be mapped to genes and genes that need to be mapped
to pathways. The details are given in Supplementary
Information Section A.

4 | SIMULATION STUDIES

4.1 | Simulation setup

We used extensive simulation studies to evaluate the
performance of the proposed methods in terms of type I
error rate and power. To evaluate the adaptive pathway‐
based testing for association studies between somatic
mutations and germline variations, we modified function
“simPathAR1Snp” in the R package “aSPU” (Kwak
et al., 2021) and generated the simulation data (SNP
matrix X and trait vector Y ) as follows.

The germline SNP data matrix X was simulated
following (Pan et al., 2015; Wang & Elston, 2007). First,
we generated a latent vector x x x= [ , …, ]p

T
1 from a

multivariate normal distribution based on the following
autoregressive covariance structure for latent variables xi
and xj:

 Corr x x θ( , ) = .i j
i j− (11)

If θ = 0, the SNPs are independent. If θ > 0, the SNPs
are correlated. A haplotype was then obtained based on
certain MAFs. Two such independent haplotypes were
combined to yield the genotype data Xi for subject i. For
the null case, all β j p= 0, = 1, …,j . For the non‐null
case, certain SNPs within some genes are set to be causal
with ≠β = logOR 0j .

To simulate single‐gene somatic mutation data, the
mutation status Yi of patient i was generated from the
logistic regression model. In case–control simulation
studies in Pan et al. (2015) and Wang and Elston (2007),
there are two sample groups: normal samples (without
disease) and tumor samples (with diseases). The
case–control study is to investigate whether the disease
is significantly associated with the predefined risk factor,
say, gene mutations, where the disease group is typically
oversampled from a population.

Here, unlike the case–control simulations in Pan
et al. (2015) and Wang and Elston (2007), we consider
cohort studies, where all the subjects are patients because
we only have tumor samples. There are two sample
groups: samples with somatic mutations in a certain
gene and those without in the same gene. That is, we
investigate whether there is a statistically significant
association between germline variations of genes and
somatic mutations of the same or different genes. In our
study, we have multi‐traits corresponding to the response
Y vector because we have multiple somatic mutation
genes. On the other hand, in Pan et al. (2014, 2015) a
single trait corresponding to Y vector is studied because
one disease or other single trait, for example, cholesterol
level, is focused.

Following the logistic regression model in (1), we
define pi as the probability of obtaining samples with
somatic mutations (Y = 1) and p1 − i as the probability
of obtaining those without somatic mutations (Y = 0),
where

p
e

e
=

1 +
.

β

βi

β X

β X

+

+

i
T

i
T

0

0

That is, the binary trait Y = 1i or 0 is sampled
following the probability pi. To decide a certain back-
ground mutation probability p0, we use

p
e

e
=

1 +
.

β

β0

0

0

4.2 | Simulation results

We conducted 12 sets of simulations to extensively study
the performances of the association test models. See
Supplementary Information Table S2 for a list of all the
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setup situations. Some of the test parameters are similar
to those in Pan et al. (2015, 2022).

• The simulations involve 20 genes each with a random
number of SNPs.

• Two sets of simulated genes are involved, where the
total number of SNPs is either 302 (with the number
of SNPs in each gene between 1 and 20) or 1042
(with the number of SNPs in each gene between 3
and 100).

• The first SNP of 1, 5, or 10 genes is set to be a
causal SNP.

• The MAFs used in the haplotype generation are
randomly selected between 0.05 and 0.4.

• We set the background disease prevalence p = 0.10 ,
that is, ∕β = log(0.1 0.9)0 for a 10% background
mutation probability.

• n = 500 patient data is simulated in the cohort study.
• K = 500 permutations are used in the p‐value
computation.

• 1000 simulation replications are used to evaluate the
power.

• We also simulate both independent SNPs (linkage
equilibrium) with θ = 0 in (11) and correlated SNPs
(linkage disequilibrium) with θ following a uniform
distribution (0, 0.8).

We demonstrated the powers of the adaptive methods
aSPU and aSPUpath as described in Sections 2 and 3.
aSPU uses the candidate parameters as suggested in Pan
et al. (2015):

∈γ Γ = {1, 2, …, 8}, (12)

aSPUpath uses candidate parameters

∈ ∈γ γΓ {1, 2, 3, 4, 5, 6, 7, 8}, Γ {1, 2, 4, 8}.1 1 2 2

(13)

The test functions were written in R and were based
on the package “aSPU” (Kwak et al., 2021).

Some other commonly used methods (hybrid set‐
based test [HYST], Li et al., 2012; Gates‐Simes, Gui
et al., 2011; SSU and UminP) were also compared.
Here, both HYST and Gates‐Simes combine p‐values
via a gene‐level test (Li et al., 2011). The former is
based on Fisher's method, and the latter is based on an
extended Simes method to obtain p‐values. Both
methods become low powered if there are weak or no
associations between many SNPs/genes and the trait.
As shown in Supplementary Information Table S1, SSU
corresponds to SPU with γ = 2. Both SSU and UminP

lose power if there are many SNPs with weak
associations.

4.2.1 | Statistical power

Figure 2 shows the powers of the methods with
different parameter setups in Supplementary Informa-
tion Table S2. In general, the powers from all the
methods increase with the increase of number of
causal SNPs regardless of whether the SNPs are
independent or correlated. Both aSPU and aSPUpath
perform reasonably well in general. In particular, with
the number of causal SNPs increases (5 and 10 causal
SNPs), aSPU and aSPUpath are more powerful than the
other methods. When the number of causal SNPs stays
fixed and the number of total SNPs increases, the
powers of the methods are a little lower. See the
comparison between Figures 2a–c and 2g–i (and also
Figures 2d–f and 2j–l).

4.2.2 | Type I error

We also evaluated the type I errors for each setup with
the test methods. See Table 1. The type I errors of aSPU
and aSPUpath maintain around the nominal significance
level of 0.05, which is comparable to the other existing
association tests, such as HYST, Gates‐Simes, SSU, and
UminP. The previous literature (Pan et al., 2014) has
demonstrated that the type I error of aSPU tests could be
controlled at 10−3 or 10−4 level with 105 simulation
replicates, but it is computationally very expensive. From
the simulations it can be seen that the data‐adaptive
schemes aSPU and aSPUpath are generally more power-
ful while maintaining similar type I errors as some other
methods.

4.2.3 | Computational burden

In addition, we compared the computational burden of
aSPU and aSPUpath with the other methods, such
as SSU, UminP, HYST, and Gates‐Simes using the
simulated data (scenario see setup D in Supplementary
Information Table S2). In this scenario, there are 20
genes (including 302 SNPs) and 500 patients. The results
are shown in Table 2. In general, aSPU and aSPUpath do
not show the advantage in the aspect of computational
burden. This is consistent with the results of Ma and
Wei (2019). It is not surprising because aSPU and
aSPUpath involved quite a few parameters and many

CHEN ET AL. | 7
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(a)

(d)

(g) (h) (i)

(j) (k) (l)

(e) (f)

(b) (c)

FIGURE 2 Powers of different test methods with 12 test setups. The number of total SNPs is 302 (a–f) or 1042 (g–l). The SNPs are
independent (a–c, g–i) or correlated (d–f, j–l). (a) 1 causal SNP, (b) 5 causal SNPs, (c) 10 causal SNPs, (d) 1 causal SNP, (e) 5 causal SNPs,
(f) 10 causal SNPs, (g) 1 causal SNP, (h) 5 causal SNPs, (i) 10 causal SNPs, (j) 1 causal SNP, (k) 5 causal SNPs, and (l) 10 causal SNPs. aSPU,
adaptive sum of powered score; aSPUpath, data‐adaptive pathway‐based test; Gates‐Simes, gene‐based association test using extended Simes
procedure; HYST, hybrid set‐based test; SNP, single‐nucleotide polymorphism; SSU, sum of squared score; UminP, univariate minimum
p‐value.
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TABLE 1 Type I errors for the tests of the setups in Supplementary Information Table S2.

Method aSPU aSPUpath HYST Gates‐Simes SSU UminP

Setup A 0.049 0.057 0.009 0.037 0.046 0.047

Setup B 0.068 0.070 0.018 0.043 0.057 0.064

Setup C 0.053 0.051 0.012 0.043 0.049 0.054

Setup D 0.053 0.064 0.011 0.040 0.051 0.045

Setup E 0.059 0.053 0.010 0.041 0.054 0.048

Setup F 0.058 0.052 0.020 0.049 0.052 0.051

Setup G 0.036 0.042 0.006 0.040 0.039 0.050

Setup H 0.055 0.069 0.014 0.049 0.057 0.054

Setup I 0.055 0.056 0.006 0.042 0.047 0.048

Setup J 0.050 0.057 0.010 0.056 0.042 0.055

Setup K 0.070 0.062 0.008 0.027 0.058 0.057

Setup L 0.052 0.057 0.020 0.037 0.047 0.054

Abbreviations: aSPU, adaptive sum of powered score; aSPUpath, data‐adaptive pathway‐based test; Gates‐Simes, gene‐based association test using extended
Simes procedure; HYST, hybrid set‐based test; SSU, sum of squared score; UminP, univariate minimum p‐value.

TABLE 2 Comparison of the computational burden (unit: second) in different methods (Scenario D in Supplementary Information
Table S2).

aSPU aSPUpath SSU UminP HYST Gates‐Simes
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

0.8902 (0.0265) 1.1357 (0.0377) 0.8087 (0.0297) 0.7940 (0.0303) 1.0718 (0.0166) 1.0700 (0.0122)

Note: Mean and standard deviation (SD) values of the computational time from 1000 simulations are reported.

Abbreviations: aSPU, adaptive sum of powered score; aSPUpath, data‐adaptive pathway‐based test; Gates‐Simes, gene‐based association test using extended
Simes procedure; HYST, hybrid set‐based test; SSU, sum of squared score; UminP, univariate minimum p‐value.

permutations which is expensive for large data. Actually,
we are working on a method for saving the computational
time of aSPU and aSPUpath tests using a low‐rank
parameter preselection, which is expected to appear in
Chen et al. (2023).

4.2.4 | Sample size

The last part but not the lest, we investigated the proper
sample size needed for the different tests. We performed
the simulations (10 causal SNPs, Scenarios C, F, I, L, fixed
Log OR= 0.4) varying the number of patients from 100,
200, 300, 400, 500, to 1000. The results are shown in
Figure 3. In general, when the sample size goes up to
1000, the statistical power of all the tests equals to 1. aSPU
and aSPU outperform the other methods in terms of the
power across different sample sizes, especially when the
sample size is relatively small (less than 300). Interest-
ingly, when the sample size goes down to 100, the powers
of aSPU and aSPU tests show better than those of the
other methods when the number of SNPs is relatively
small. (see Scenarios C and F with 302 number of SNPs).

5 | DATA EXAMPLE:
INTEGRATIVE ANALYSIS OF
ASSOCIATIONS BETWEEN
SOMATIC MUTATIONS AND
GERMLINE VARIATIONS IN
THE ICGC

In this section, we study the associations between somatic
mutations and germline variations for a real‐world pan‐
cancer data set called the ICGC. Our aim is to systematically
characterize such associations across multiple cancer types.
The ICGC data first undergoes a sequence of preprocessing
so that we can extract data that can be analyzed with
statistical tests. We then apply the tests in the previous
sections to the resulting data and perform a comprehensive
analysis of the underlying interactions between germline
variations and somatic mutations.

5.1 | ICGC data and processing

We briefly summarize the ICGC data preprocessing
procedure here (see details in Supplementary Information

CHEN ET AL. | 9
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Section A). The ICGC Pan‐Cancer Analysis of Whole
Genomes (PCAWG) data set includes 2583 cancer
patients (white list) with 38 cancer types (The ICGC/
TCGA Pan‐Cancer Analysis of Whole Genomes Consor-
tium, 2020). We preprocessed the ICGC germline
variation and somatic mutation data regarding the
samples and the SNPs/genes. A series of steps of
preprocessing the SNPs included removing indels,
removing SNPs in sex chromosomes, and keeping the
common variants (MAF >5%). After removing hypermu-
tated samples, 2575 samples were left. Then we found the
number of overlapping samples from germline samples
and somatic samples was 2561. Finally, we had the SNP
data matrix which included genotype scores (0, 1, 2) from
6,495,525 SNPs for 2561 samples. That is, X is a
2561 × 6,495,525 matrix with 0, 1, 2 entry in each cell.
SNPs were then annotated to genes via a gene annotation
software package Oncotator (Ramos et al., 2015) (http://
portals.broadinstitute.org/oncotator/). For somatic muta-
tion data, we removed the genes that are annotated as

silent and Intergenic region (IGR). Finally, the cleaned
somatic matrix Y had 24,837 genes for 2561 samples.
That is, Y is a 2561 × 24,837 matrix, and its columns can
be used to extract the trait vectors Y in (3) for the genes
with somatic mutation. From ICGC data, there are 159
driver genes with protein‐coding point mutations, among
which 150 genes overlap with our annotated germline
variation genes and 156 genes overlap with our
annotated somatic mutation genes.

5.2 | aSPU association test results

5.2.1 | aSPU association test results

The ICGC driver gene list (The ICGC/TCGA Pan‐Cancer
Analysis of Whole Genomes Consortium, 2020) was used
for testing the associations between somatic mutations
and germline variations. We first performed aSPU
tests on ICGC driver genes' somatic and germline data.

(a) (b)

(c) (d)

FIGURE 3 The effect of sample size on the powers of different test methods with four test setups as in Supplementary Information
Table S2. (a) Scenario C, (b) Scenario F, (c) Scenario I, and (d) Scenario L. aSPU, adaptive sum of powered score; aSPUpath, data‐adaptive
pathway‐based test; Gates‐Simes, gene‐based association test using extended Simes procedure; HYST, hybrid set‐based test; SSU, sum of
squared score; UminP, univariate minimum p‐value.
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For each association test, the X data matrix in (3)
includes all SNPs in one gene and the binary trait vector
Y in (3) is for one gene's somatic mutation status. We
choose bootstrapping as the resampling method and
choose γ from the candidate set (12). The permutation
number is 1000. In all, 150 overlapping genes between
our annotated common germline SNPs and the driver
gene list were chosen in our tests. Also, 156 overlapping
genes between our annotated somatic mutation genes
and the driver gene list were used. On the basis of the
mapping table, germline variation samples and somatic
mutation samples were matched to the same patients.
The total number of association tests between the 150
germline variation genes with SNPs and the 156 somatic
mutation genes was 150 × 156 = 23,400.

We discovered that the p‐values from 1728 out of
23,400 associations tests (a rate of 7.38%) were less than
the nominal significance level 0.05. Supplementary
Information Tables S5 and S6 show selected p‐values.
Totally, seven out of 150 germline genes had significant
associations with 20 or more somatic mutation genes.
False discovery rate (FDR) multiple testing correction
was then performed. The number of FDR values less
than 0.2 was 210.

We then drew heatmaps for both p‐values and FDR
values from the tests (Supplementary Information
Figure S1A and Figure 4a). For the purpose of easy
visualization, in all the heatmaps, we show the values

p−log ( ‐value or FDR)10 . For the purpose of postquality
control, we only kept the genes whose somatic mutation
frequency is more than 1% across all cancer types in the
heatmap result, although we do the association tests for
all the driver genes.

Interestingly, we found that somatic mutations in the
gene CTNNB1 were associated with almost all of the
germline gene variations (Figure 4a). The gene KRAS
was the second hotspot besides CTNNB1. In addition,
germline variations in the gene KMT2C are associated
with the somatic mutations in a large proportion of
genes. Literatures for supporting these findings will be
discussed in Section 5.7.

5.2.2 | cis/trans association results

Based on Knudson's “two‐hit” theory, patients tend to
develop cancer if they have both germline variations and
somatic mutations of the same gene. Thus, we are
interested in whether associations between the same
genes' germline variations and somatic mutations tend to
happen more often than different genes'. We refer to the
same genes' associations in both germline variations and
somatic mutations as “cis,” and refer to different genes'

association studies as “trans.” We created the 2 × 2

contingency table (Table 3) for the cis significant
association count, trans significant association count,
cis nonsignificant association count, and trans non-
significant association count. It demonstrated that the
significant count from cis associations is not significantly
higher/lower than trans associations (Fisher's exact test
p‐value = 0.339), although cis significant count percent-
age (9.5%) was slightly larger than trans significant count
percentage (7.4%). That means, the same genes' germline
variations and somatic mutations associations did not
tend to happen more often than different genes'
associations.

5.3 | aSPU test versus Fisher's exact test

To demonstrate that the data‐adaptive aSPU test is more
powerful than commonly used association test, we
performed Fisher's exact test on the same ICGC data
set and compared the results from aSPU. Note that
Fisher's exact test is limited to single SNPs in germline
variation genes. Given each germline gene, we performed
Fisher's exact test between the variation status of each
SNP in the gene and one somatic mutation status. A
2 × 3 contingency table was created with each row
indicating one gene's somatic mutation status (which is
binary with 0 for no mutation and 1 for mutation) and
each column indicating germline SNP genotype score 0,
1, or 2 as defined before for the SNP matrix X in
Section 2.1. Because there are multiple SNPs in each
germline gene (Supplementary Information Table S4),
there are multiple Fisher's exact tests for each germline
variation and somatic mutation association. We chose
the minimum p‐value among multiple association tests
corresponding to the SNPs within one germline gene.
Then we performed Bonferroni multiple testing correc-
tion on the minimum p‐value for the germline gene
association by the number of SNPs in the gene. The rest
settings are exactly the same as those in the aSPU test.

We found that the corrected p‐values from 675 out of
23,400 associations tests are smaller than the nominal
significance level 0.05 (a rate of 2.88%). Supplementary
Information Tables S7 and S8 show significant p‐values
(Bonferroni corrected within one gene for multiple SNPs
testing) for 7 selected germline genes as those from the
aSPU test results in Supplementary Information Tables S5
and S6. Clearly, the numbers of significant associations are
much smaller than those from the aSPU test.

We also plotted the heatmaps for both p‐values and
FDR values from Fisher's exact test. We kept the
exact same gene list with a somatic mutation frequency
of more than 1%. See Figure 4. By comparing

CHEN ET AL. | 11

 10982272, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gepi.22537 by M

edical C
ollege O

f W
isconsin, W

iley O
nline L

ibrary on [12/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(a)

(c) (d)

(b)

FIGURE 4 Heatmap of−log (FDR)10 from (a) aSPU test, (b) Fisher's exact test, (c) MAGMA gene analysis, and (d) −log (FDR +10 )10
−6

from aSPUpath test between germline variations and somatic mutations of driver genes. The color range of the heatmaps is from blue to red:
darker red of the cells in the heatmap indicates a more significant association. The threshold corresponding to FDR= 0.2 is

≈−log (0.2) 0.7010 . FDR, false discovery rate; aSPU, adaptive sum of powered score; aSPUpath, data‐adaptive pathway‐based test.
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Figure 4a against Figure 4b and Supplementary Informa-
tion Figure S1A against Figure S1B, it is clear that aSPU
detects many more significant associations or hotspots
than Fisher's exact test for the same data set. Interest-
ingly, although the significance signal from Fisher's exact
tests in the heatmap is less than that from the aSPU test,
we can still tell that somatic mutation genes CTNNB1
and KRAS are two hotspots in the associations.

5.4 | aSPUpath test results

5.4.1 | Pathway‐based association results

Then, we performed aSPUpath tests to study the
associations between the somatic mutations in the same
driver genes as used in the aSPU test and the germline
variations in the 10 key cancer pathways (Sanchez‐
Vega, 2018). See Supplementary Information Table S3 in
Section A.5. The number of pathway genes overlapping
with our annotated germline variation genes is 259. For
each association test, the data include all the SNPs in all
the genes in a pathway (for the X matrix in Equation 3)
and one gene's somatic mutation status (for the Y vector
in Equation 3). We chose the candidate parameters γ1 and
γ2 as in (13). The number of permutations is 1000.

The aSPUpath test results showed that the p‐values
from 188 out of 1560 association tests were less or equal
to the nominal significance level 0.05 (a rate of 12.05%).

Supplementary Information Tables S9 and S9 showed the
significant p‐values. FDR multiple testing correction was
then performed and the FDR values from 89 association
tests were less or equal to 0.2.

We also created heatmaps for aSPUpath association
tests between pathway germline variations and somatic
mutations with raw p‐values and FDR values. See
Supplementary Information Figure S1C (p‐values) and -
Figure 4c (FDR values). The heatmaps for the aSPUpath
results for both raw p‐values and FDR values demon-
strated that the somatic mutation genes CTNNB1 and
KRAS were associated with germline variations of almost
all the pathways, which was consistent with the results
from aSPU tests. We also found that the pathway
RTK.RAS's germline variations are associated with the
somatic mutations of a large proportion of genes.

5.4.2 | Dominant contributions to the
associations

To investigate whether there exists a single gene in a
pathway that dominates the contributions to the
pathway–somatic association or a large proportion of
genes in a pathway contributes to the associations, we
performed the following tests. For each pathway, we
performed aSPU tests on germline gene variations and
somatic mutations and then ranked germline genes in
the pathway based on the corresponding p‐values.

The results showed that both situations existed. For
example, in aSPUpath tests, we detected that germline
variations in the TP53 pathway were significantly associ-
ated with KRAS somatic mutation (aSPUpath p<0.001). In
aSPU tests, the p‐values from the associations between
each germline gene in TP53 pathway and KRAS somatic
mutation were given in Table 4 (part A). We found that the

TABLE 3 aSPU cis/trans result.

Significant (p≤0.05) Not significant (p>0.05)

cis 14 (9.5%) 133 (90.5%)

trans 1714 (7.4%) 21,539 (92.6%)

Abbreviation: aSPU, adaptive sum of powered score.

TABLE 4 p‐Values from the aSPU association tests between each germline gene in the TP53 pathway and the KRAS somatic mutation,
and association tests between each germline gene in the MYC pathway and the KRAS somatic mutation.

(A) TP53 pathway

Gene MDM4 CHEK2 MDM2 ATM TP53

p‐value 0.000999 0.016983 0.0539461 0.2837163 0.4475524

(B) MYC pathway

Gene MAX MGA MLXIP MLXIPL

p‐value 0.232767233 0.018981019 0.297702298 0.365634366

Gene MNT MXD1 MXD3 MXD4

p‐value 0.733266733 0.85014985 0.02997003 0.045954046

Gene MXI1 MYC MYCL MYCN

p‐value 0.017982018 0.078921079 0.022977023 0.012987013

Abbreviation: aSPU, adaptive sum of powered score.
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gene MDM4 made the dominant contribution to the
association between the germline variations in the TP53
pathway and KRAS somatic mutation.

On the other hand, in the aSPUpath tests, we detected
a significant association between MYC pathway germline
variations and KRAS somatic mutation (aSPUpath,
p<0.001). However, multiple germline genes in the
MYC pathway contributed to the MYC pathway/KRAS
somatic mutation association. See Table 4 (part B).

5.5 | Comparison of aSPU and aSPUpath
tests with the other existing methods

Besides Fisher's exact test, with the same ICGC data set,
we also tested other related existing methods, including
MAGMA (Leeuw et al., 2015), SSU, UminP, HYST, and
Gates‐Simes for comparison. In general, these methods
detected usually much smaller numbers of significant
associations than those from aSPU and aSPUpath
methods. In addition, some of the aforementioned five
methods demonstrated the limitations of the association
detections on both the gene level and the pathway level.

5.5.1 | MAGMA gene‐based and gene‐set‐
based analysis

MAGMA is a novel tool of gene and gene‐set analysis for
GWASs. It was shown that both the MAGMA gene analysis
and the MAGMA gene‐set analysis have significantly higher
power than some other tools and they could detect more
genes and gene sets in a real example (Leeuw et al., 2015).
However, with the same ICGC data set, we discovered that
the p‐values of MAGMA gene analysis from only 1183 out
of 23,400 association tests (a rate of 5.09%) were smaller
than or equal to the nominal significance level 0.05 (aSPU:
1728 out of 23,400, a rate of 7.38%). After the FDR multiple
testing correction, the number of the FDR values from
MAGMA gene analysis less than 0.2 was 140 (aSPU: 210).
Similarly, the p‐values of MAGMA gene‐set analysis from
only 80 out of 1560 association tests (a rate of 5.13%) were
smaller than or equal to the nominal significance level 0.05
(aSPUpath: 188 out of 1560, a rate of 12.05%). The number
of the FDR values fromMAGMA gene‐set analysis less than
0.2 was only 2 (aSPUpath: 89). See the heatmaps for
MAGMA gene analysis (FDR: Figure 4c and p‐values:
Supplementary Information Figure S1) and for MAGMA
gene‐set analysis (p‐values and FDR: Figure 5).

In addition, one of the major limitations of the
MAGMA is that we have to first calculate p‐value for the
association between each single SNP and each somatic
mutation. However, due to the rank‐deficient models for

some associations between SNPs and somatic mutations,
the p‐values could not be obtained. This results in NAs of
p‐values. The percentage of NAs for the MAGMA gene
analysis was 0.3328% (9516 NA p‐values among 2,859,636
associations). The percentage of NAs for the MAGMA
gene‐set analysis was 0.4749% (30,888 NA p values among
6,504,420 associations). This type of information loss might
contribute to the weak detection of the significant
association tests.

5.5.2 | SSU and UminP

These two methods were designed for the gene‐based
association tests. We found that the p‐values of SSU tests
from 1693 out of 23,400 association tests were smaller
than the nominal significance level 0.05 (a rate of 7.24%),
which was slightly less than that with aSPU tests (a rate
of 7.38%). The UminP tests showed 1729 out 23,400
association tests (7.39%) resulted in p‐values less than
0.05, comparable to aSPU tests. After the FDR multiple
testing correction, the number of FDR values less than
0.2 from HYST tests (146) was smaller than that from
aSPU tests (210). So is the case with Gates‐Simes tests
(159). See the heatmaps for the SSU tests (FDR:
Figure 6a) and for the UminP tests (FDR: Figure 6b).

5.5.3 | HYST and Gates‐Simes

These two methods were designed for pathway‐based
association tests. Both HYST and Gates‐Simes methods
have the same limitation as MAGMA because the
p‐values for the association tests between a single SNP
and the somatic mutation of a gene also need to be
calculated first. We found that HYST and Gates‐Simes
detected the less significant numbers of associations than
that from aSPUpath tests, especially after the FDR multiple
testing correction. See the heatmaps for HYST tests (FDR:
Figure 6c) and Gates‐Simes tests (FDR: Figure 6d).

5.6 | Network of pathway germline
variations and somatic mutations

To further investigate the interactions between germline
variations and somatic mutations, we used the aSPUpath
results to create a network via a software tool called
Cytoscape (https://cytoscape.org/). Cytoscape is an open‐
source software tool to visualize the interactions from
network views. We used Cytoscape to create a network of
interactions between pathway germline variations and
somatic mutations. See Figure 7.
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The network figure illustrates that the RTK.RAS
pathway is significantly associated with nine genes'
somatic mutations: CDK12, ARID2, FBXW7, EGFR,
VHL, KRAS, CTNNB1, MEN1, and BRAF. In the
RTK.RAS pathway, RTK represents Receptor Tyrosine
Kinases and RAS is a kind of small GTPase. We found
several literatures that support our findings on the
RTK.RAS pathway germline associations with some
genes' somatic mutations:

• KRAS is a gene in the RAS family (K‐RAS, N‐RAS, and
H‐RAS) (Regad, 2015), which is a part of RTK.RAS
pathway.

• BRAF is a gene in the RAF family (A‐Raf, B‐Raf, and
C‐Raf) (Regad, 2015), which is along the downstream
of RTK.RAS pathway (Imperial et al., 2017).

• EGFR, KRAS, and BRAF are all clinical targets for lung
cancer patients (Imperial et al., 2017).

Interestingly, the CTNNB1 somatic mutation is
associated with all 10 pathways. The CTNNB1 gene in
the WNT pathway encodes β‐catenin and this gene's

mutation happens in many cancers (Gao et al., 2018).
The alternation of β‐catenin protein tends to seriously
reprogram the nuclear transcriptional network (Gao
et al., 2018). It was reported by Gillard et al. (2017) that
the CTNNB1 hotspot somatic mutation is associated with
the WNT‐ or PI3K‐pathway activation.

5.7 | Discussions on hotspots

There are some interesting findings in our association
studies. The somatic mutation genes CTNNB1 and KRAS
are hotspots because they are significantly associated
with almost all the driver genes' and pathways genes'
germline variations. The CTNNB1 gene is a protein‐
coding gene, which encodes catenin beta 1 protein. This
gene is part of the WNT pathway (Maharjan et al., 2018).
KRAS is important in cell signal events. For example, it
controls cell proliferation because it acts as an on/off
switch in cell signaling (Pantsar, 2019). Also, the KRAS
gene gains substantial attention for target therapy in
cancer (Huang et al., 2021).

(a) (b)

FIGURE 5 Heatmap of (a) −log10(p‐value + 10−6) and (b) −log10(FDR+ 10−6) from MAGMA gene‐set analysis between germline
variations and somatic mutations of driver genes. The color range of the heatmaps is from blue to red: darker red of the cells in the heatmap
indicates a more significant association. The threshold corresponding to the p‐value 0.05 is −log10(0.05) ≈ 1.3. The threshold corresponding
to FDR= 0.2 is −log10(0.2) ≈ 0.70. FDR, false discovery rate.
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(a)

(c) (d)

(b)

FIGURE 6 Heatmap of −log10(FDR) from (a) SSU test (b) UminP test and −log10(FDR+ 10−6) from (c) HYST test (d) Gates‐Simes test
between germline variations and somatic mutations of driver genes. The color range of the heatmaps is from blue to red: darker red of the
cells in the heatmap indicates a more significant association. The threshold corresponding to FDR= 0.2 is −log10(0.2) ≈ 0.70. FDR, false
discovery rate; HYST, hybrid set‐based testGates‐Simes, gene‐based association test using extended Simes procedure; SSU, sum of squared
score; UminP, univariate minimum p‐value.
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Our findings of the interactions between germline
variations and somatic mutations are supported by
multiple literatures. For example, for the CTNNB1 gene
somatic mutation, it was shown by Yedid et al. (2016)
that a germline mutation in the APC (Adenomatous
polyposis coli) gene is associated with enhanced
β‐catenin activity (CTNNB1 gene). In addition, both
APC and CTNNB1 genes are in the WNT pathway. The
TP53 germline variation status is shown to be associated
with the CTNNB1 mutation (Pfaff et al., 2010). It was
indicated by Mamidi et al. (2019b) that the CTNNB1
somatic mutation is associated with multiple germline
variations (including RAS) and other somatic mutation
genes (including PIK3CA) in prostate cancer. It was
reported that CTNNB1 hotspot mutation is associated
with WNT‐ or PI3K‐pathway activation (Gillard et al.,

2017). The inactivation of the gene CDK12 is associated
with CTNNB1 activating mutation in prostate cancer
(Wu et al., 2018). As for the KRAS gene, the KRAS
somatic mutation is shown to be associated with germ-
line 10q22.3‐q23.2 deletion in a patient with juvenile
myelomonocytic leukemia (Yao et al., 2018). The somatic
mutation of KRAS is more frequent in individuals with
specific MHC‐I genotypes (Ramroop et al., 2019).

6 | DISCUSSION

In this paper, we have adapted and developed two
powerful data‐adaptive large‐sample score tests to study
the interactions between germline variations and somatic
mutations in human cancers. One is the data‐adaptive

FIGURE 7 Network showing the association results from aSPUpath, where the labels in rectangles are for pathways and the labels in
ellipses are for somatic mutation genes. The color of the label of each gene indicates how many pathways the gene has associations with.
The darker the color is, the more associations it has. The thickness of each network edge indicates the significance of the association. The
thicker the edge is, the stronger the association is. aSPUpath, data‐adaptive pathway‐based test.
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aSPU test, which aggregates SNPs into genes. The other
is the pathway‐based method aSPUpath, which aggre-
gates genes into pathways. To accommodate different
data situations, different weights and parameters are
used to produce different sets of p‐values, which are then
combined to yield data‐adaptive aSPU and aSPUpath
tests for the interactions between somatic mutations and
germline variations. The methods can be applied to
multiple SNPs/genes/pathways and are more powerful
than commonly used germline–somatic association test
methods such as Fisher's exact test, SSU, UminP, HYST,
and Gates‐Simes. Simulation results show that both
aSPU and aSPUpath have enhanced statistical powers
compared with some conventionally used association
models and maintain similar type I errors.

We incorporate the two data‐adaptive test methods
into the comprehensive analysis of large‐scale ICGC data
set for the association studies between germline varia-
tions and somatic mutations. Raw germline SNPs and
somatic mutation data are processed through a sequence
of screening and filtering techniques. Various association
results are discovered between driver gene somatic
mutations and germline variations. For example, aSPU
results show that the p‐values from a rate of 7.38%
associations are less than the significance level of 0.05.
The germline variation from the CTNNB1 gene is
associated with almost all of the driver somatic muta-
tions we tested. We also detect other hotspots, such
as KRAS and KMR2C. Our results indicate that the data‐
adaptive methods detect many more significant associa-
tion signals between germline variations and somatic
mutations than with Fisher's exact test (a rate of 2.88%
association signals) and MAGMA gene analysis (a rate of
5.09%). The aSPUpath test is performed on the interac-
tions between 10 key pathways' germline variations and
the driver genes' somatic mutations, showing a rate of
12.05% significant associations, which is much higher
than that with MAGMA gene‐set analysis (a rate of
5.13%). In addition to CTNNB1 and KRAS, we find that
pathway RTK.RAS germline variations are associated
with a large proportion of genes with somatic mutation.

In practice, one may think that the variation of
pathways such as the inclusion or the exclusion of
certain genes affects the results of our association tests.
Regarding this, we performed an on/off test to see
whether a significant association between a germline
pathway and a somatic mutation is driven by a certain
gene. For example, we did a test where we removed the
most significant gene MDM4 from the TP53 pathway.
The germline TP53 pathway was still significantly
associated with the KRAS somatic mutation (p= 0.003).
On the pathway level, genes work collectively. Our
pathway‐based association tests consider the association

between a germline pathway and somatic mutations.
Thus, in general the variations of the pathway should not
have significant impacts on this kind of association tests.

Our research in this paper provides valuable statisti-
cal tools and models for cancer studies, cancer predic-
tion, and cancer therapy. The statistical tests give new
insights into the associations among multiple aspects of
multiple cancer types. For example, if certain germline
variations are observed in a patient, our association
studies can be used to tell the chance of also having some
somatic mutations. According to Knudson's “two‐hit”
theory, we can predict if the patient is likely to have a
certain cancer or not. Thus, our research is useful for
cancer risk prediction and can help medical researchers
focus on specific genes in cancer studies. The work also
helps researchers better understand the molecular
mechanisms of specific cancer genes and brings new
insights into the development of novel cancer therapy.
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