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Abstract
Mitochondrial DNA (mtDNA) variants in patients with myelodysplastic neoplasms (MDS) are shown to be 
prognostic of outcomes after allogeneic hematopoietic cell transplantation (allo-HCT). However, the prognostic 
impact of donor mtDNA variants is unknown. Here, we performed whole-genome sequencing on 494 donors who 
were matched to MDS patients enrolled in the Center for International Blood and Marrow Transplant Research 
(CIBMTR). We evaluated the impact of donor mtDNA variants on recipients’ transplantation outcomes, including 
overall survival, relapse, relapse-free survival, and transplant-related mortality. The optimism-adjusted bootstrap 
method was employed to evaluate the prognostic performance of models that include donor mtDNA variants 
alone and combined with MDS- and HCT-related clinical factors. In the entire donor cohort, we identified 1,825 
mtDNA variants, including 67 potential pathogenic variants. Genetic variants on MT-CYB and MT-ND5 genes were 
identified as independent predictors of posttransplant outcomes. Integration of donor mtDNA variants into the 
models based on the International Prognostic Scoring System-Revised (IPSS-R) could capture more prognostic 
information for MDS patients. Sensitivity analysis in 397 unrelated donors obtained similar results. More importantly, 
we found that incorporating donor mtDNA variants with donor age and the degree of HLA-matching could 
help to identify “suboptimal” younger HLA-well-matched unrelated donors and “optimal” older HLA-partially/
mismatched unrelated donors. Our study shows that mtDNA variants in donors, including those from unrelated 
donors, hold prognostic value for MDS patients undergoing allo-HCT and augment the prognostic stratification of 
current scoring systems. These findings present an opportunity to refine donor selection strategies and improve 
posttransplant outcomes for MDS patients.
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To the Editor,
Allogeneic hematopoietic stem-cell transplantation 

(allo-HCT) is the only curative therapy for myelodys-
plastic neoplasms (MDS) [1]. However, disease relapse 
and transplant-related mortality (TRM) remain the main 
obstacles limiting the success of allo-HCT. Donor-related 
factors, such as donor age and genetic susceptibility, have 
been reported to be independent prognostic factors of 
posttransplant survival in MDS [2–4]. Despite mitochon-
dria playing a critical role in MDS pathogenesis [5], few 
studies have investigated the effects of donor mitochon-
drial DNA (mtDNA) variants on posttransplant out-
comes in MDS. Using whole-genome sequencing (WGS), 
we profiled the prognostic landscape of mtDNA muta-
tions in 494 European ancestry patients with MDS who 
underwent allo-HCT [6]. Here, we performed WGS on 
their 494 donors (Supplementary Table 1) and investi-
gated the prognostic impact of donor mtDNA variants.

A total of 1,825 mtDNA variants were identified, with 
the median number of 32 (ranging from 6 to 88) per 
donor. Sixty-seven mtDNA variants were predicted 
to be pathogenetic. Among them, four heteroplasmic 
rare variants were associated with at least one of the 
four post-transplant outcomes (i.e., overall survival 
(OS), relapse, relapse free survival (RFS), and TRM) 
(P < 0.05/67 = 7.46 × 10− 4) (Supplementary Table 2). 
Common variants that were associated with posttrans-
plant outcomes at P values < 0.05 were listed in Supple-
mentary Tables 3–6. Gene-based analysis showed that 

donor MT-ND5 was associated with RFS (P = 1.02 × 10− 4), 
relapse (P = 6.10 × 10− 5) and TRM (P = 3.60 × 10− 4), and 
MT-CYB was associated with relapse (P = 9.44 × 10− 4) 
after Bonferroni correction (P < 0.05/16 = 3.13 × 10− 3) 
(Table  1). MT-ND5 is a mitochondrial respiratory com-
plex I subunit and a genetic hotspot for many cancers, 
including MDS [6, 7]. Genetic alterations in complex I 
genes may cause the generation of ROS, impair oxida-
tive phosphorylation (OXPHOS), and reduce the ATP 
synthesis, all of which could promote tumorigenesis [8]. 
MT-CYB is fundamental for the assembly and function 
of OXPHOS complex III. Genetic variants on MT-CYB 
resulting in complex III deficiency have reported in asso-
ciation with blood disorders [9, 10]. Additional signifi-
cantly associated mitochondrial genes were observed in 
burden test and/or SKAT (Supplementary Tables 7 and 
Supplementary Figs. 1–4). No significant association was 
observed for OS. Similar results were observed when 
adjusting for patients’ clinical factors (i.e., IPSS-R, MDS 
type and pre-transplant treatments) with minor differ-
ences (Supplementary Table 8).

Eighteen mitochondrial haplogroups were predicted in 
donors. Within our expectation, haplogroup H was the 
most common haplogroup in our study population [6]. 
Compared to H, haplogroup V was significantly asso-
ciated with shorter OS (HR, 1.95; 95% CI, 1.05–3.62; 
P = 0.03) and worse TRM (HR, 2.28; 95% CI, 1.03–4.99; 
P = 0.04) (Supplementary Table 9).

Table 1  Associations between donor mitochondrial genes and MDS outcomes after allo-HCT
Gene No. of MDS No. of Death No. of Relapse No. of TRM OS RFS Relapse TRM
Control region 494 278 178 136 0.02 0.18 0.19 6.44 × 10− 3*
Complex I 494 278 178 136 0.11 1.21 × 10− 3* 0.20 0.27
  ND1 448 251 162 121 0.29 0.37 0.51 0.17
  ND2 483 272 176 131 0.26 0.37 0.02 0.64
  ND3 145 91 53 45 0.57 0.33 0.56 0.35
  ND4 309 179 108 92 0.14 0.14 0.01 0.08
  ND4L 81 46 30 26 0.38 0.93 0.29 0.82
  ND5 494 278 178 136 0.44 1.02 × 10− 4* 6.10 × 10− 5* 3.60 × 10− 4*
  ND6 190 105 74 47 0.01 0.08 0.28 0.01
Complex III 493 277 177 136 0.08 0.04 9.44 × 10− 4* 0.69
  CYB 493 277 177 136 0.08 0.04 9.44 × 10− 4* 0.69
Complex IV 402 219 140 109 0.04 0.14 0.43 0.27
  CO1 346 194 120 98 0.02 4.06 × 10− 3 0.01 0.01
  CO2 139 66 40 36 0.10 0.19 0.01 0.32
  CO3 180 102 67 46 0.15 0.03 0.05 4.86 × 10− 3

Complex V 491 276 176 136 0.27 0.20 5.12 × 10− 4* 0.44
  ATP6 490 276 176 136 0.34 0.22 2.84 0.55
  ATP8 48 30 15 17 0.28 0.36 0.14 0.36
rRNA 489 275 176 135 0.07 0.58 0.04 0.54
tRNA 245 133 88 66 0.08 0.37 0.39 0.08
Models are adjusted for donor age, sex, type and first 10 principal components.

*Significant P values after Bonferroni correction.
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We then evaluated whether donor mtDNA variants 
could predict patient posttransplant outcomes. As shown 
in Supplementary Fig.  5A, the model based on IPSS-
R alone had a low to moderate performance with cor-
rected C-index of 0.58, 0.56, 0.57, and 0.56 to predict 
OS, relapse, RFS and TRM, respectively. Incorporating 
donor mtDNA variants into IPSS-R model improved 
the performance of the IPSS-R model, with the absolute 
value of corrected C-index increased from 0.58 to 0.59 
for OS, from 0.56 to 0.58 for relapse, and from 0.57 to 
0.58 for RFS, respectively. However, no improvement was 
observed in predicting TRM.

To examine whether the prognostic effects of donor 
mtDNA variants are caused by the shared genetic heri-
tability between related donors and patients, we further 
conducted a sensitivity analysis in 397 unrelated donors. 
We observed similar results as those in the entire donor 
cohort with minor differences (Supplementary Fig.  5B 
and Supplementary Tables 10–16), suggesting that 
genetic heritability from unrelated donors could also pro-
vide additional information to improve the prognostic 
stratification of MDS patients undergoing allo-HCT.

To investigate the clinical implications of donor 
mtDNA variants in optimizing donor selection, we fur-
ther computed donor selection scores using donor age 
and the degree of HLA-matching, with and without the 
inclusion of donor mtDNA variants (Supplementary 

Methods, Fig. 1). For OS, 1% (n = 3) younger HLA-well-
matched unrelated donors were categorized as “subop-
timal”, and 8% (n = 1) older HLA-partially/mismatched 
unrelated donors were considered as “optimal”. For 
relapse, 22% (n = 64) younger HLA-well-matched unre-
lated donors were categorized as “suboptimal”, and 54% 
(n = 7) older HLA-partially/mismatched unrelated donors 
were categorized as “optimal”. Our findings highlight that 
utilizing donor mtDNA variants can assist in decision 
making of which donor is better than another.

In conclusion, this study lays the groundwork for 
updating guidelines in donor selection strategies, which 
may ultimately enhance the likelihood of successful HCT. 
Future studies focusing on deeper sequencing of tar-
geted genes to evaluate mtDNA in the context of IPSS-
M model, and evaluating the interplay between nDNA 
and mtDNA variants, as well as the interactions between 
donor and recipient variants, may yield additional 
insights to further refine prognostic stratification.
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allo-HCT	� Allogeneic hematopoietic stem-cell transplantation
MDS	� Myelodysplastic syndromes
mtDNA	� Mitochondrial DNA
WGS	� Whole-genome sequencing
CIBMTR	� Center for International Blood and Marrow Transplant Research
OS	� Overall survival
RFS	� Relapse-free survival
TRM	� Transplant-related mortality

Fig. 1  Clinical implications of donor mtDNA variants in identifying optimal and suboptimal unrelated donors. Donor selection scores were computed 
based on donor age and the degree of HLA-matching, with and without the inclusion of donor mtDNA variants. “Suboptimal” indicates that incorporat-
ing donor mtDNA variants may lead to a shorter OS or a higher risk of relapse for the recipient, compared to considering only the donor’s age and the 
degree of HLA-matching. “Optimal” indicates that incorporating donor mtDNA variants may result in a longer OS or a lower risk of relapse for the recipient, 
compared to only considering the donor’s age and the degree of HLA matching. “Neutral” suggests no differences between the scores with and without 
the inclusion of donor mtDNA variants. The x-axis represents the number and percentage of donors that classified as “optimal”, “neutral” and “suboptimal” 
after incorporating donor mtDNA into the score. Each row sums to 100%.

 



Page 4 of 4Dong et al. Journal of Hematology & Oncology          (2024) 17:104 

IPSS-R	� Revised International Prognostic Scoring System
ROS	� Reactive oxygen species
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tRNA	� Transfer RNA
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